[ONF = 856574 - =
LA-UR--85-1707 reooT oy oSt JUNO7

DE85 012733

Los Aizmos Nationa! Laboratory is opersiec by the University of Calitormis for the Unhed States Depariment of Energy under contract W-7405-ENG-3E

TITLE: DYNAMIC DATA STRUCTURES AND CONCURRENCY IN A REAL-TIME DALA
ACQUISITION SYSTEM

AUTHORS) (. Cort, J. A. Goldstone, R. 0. Nelson, R. V. Poore,
L. Mlller and D. M. Barrus

SUBKITTED TO Fourth Blennlal Confer nce on Real-Time Computer Applicatfons
In Nuciear and Particle Physlces
Chicapgo, 1llinols
. n -
May 20-24, 1985 RAAR =y

by

DISCLAIMER

This report was prepared as an account of work spansored by an ngency ol the Umted States
Government. Neither the United States Government nor any agency thereol, nor any of their
cmiployces, mukes any warranty, eapreay or implied, or assames uny legal linhility or responsi
bility fur the accuracy, completeness, or usefulnesz of any information, apparatus, prsfuct, or
process disclosed, or represents that ity use would not infringe privately ownei rights. Reler
cnce herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not nccessarily vanstitute or imply ity endorsement, recom-
mendntion, or favoring by the United Ntates Guvernment o nny agency thereol. The views
and opinions of anthors expressed herein do nut necessarily state or reflect thoae of the
Uni e States Governraent or any ageney thereol.

Ry scceplance uf 1 aricle, the publn vevognires thalthe US Government retaing & nonexclusne taylly-lise irense 1o publish or reproduce
the put ighec lo'n 0! thi coniibyhon, or 10 aliow pibars In do 3o, Im U S Goverminen) purpeses
Tne Leg Alames hational Laboralory renuests that the pyblinhar jdentity 1hug pricie gy work periormed under the austeces t1the 1) S Department ot Cneipy

« A

,
D N\ Y Los Alamos National Laborator
O@ A e [ﬂfﬂ@@ l._gsAl'jmgg,N(;\:\;w&qexi(,;ooé;éﬂ%
2

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

DYNAMIC DATA STRUCTURES AND CONCURRENCY IN A REAL-TIME
DATA ACQUISITION SYSTEM

G. Cort, J. A. Goldatone, R. O. Neison, R. V. Poore
L. Miller and D. M. 3arrus

l.os Alamos Natlonal Laboratory
Loa Alamos, New Mexlco B75u4%

A stract

We report on our efforts In developing an tnnovative real-time data
acquisition syatem that mnkes extenslve use of dynamle data struc-
tures, concurrency and atate machine teatures., The Data Acquisition
Command lnnguage developed at the Los Alamos Weapons Neutron Hesearch
(WNR) Factlity 1s a Paacal-based ayatem that' Incorporates these fea-
tures Lo maximize system perlformance, reliabllity and adaptabllity
while supporting a conalstent., tramiitar and comfortahle uner
Intertnce. The detalla and benefita of the fmplementation philosophy
and undervlylng atructures are discunsed.

Introduct.lon

The raptd advance oft compu . Lechinology s a phenomenon that ts qulte
familine Lo nny profeaantonnl 1n the Yeld. That these advances have
been charactertzed by succeantve revolutlonary tmprovements in the
architecture, performance, functlionnlity and avatlablility ot commater
hardwnre 1n well eastablished. The antie'pation with which each new
Innovat.lon ta awnlted, ard the zeal accompnny tng procurement, and
ntiltzatton, 1an n Leatnment, to Lhe profeastonnl commuintty'n dedicatlon
Lo tmproving the quallty and fanctionallty of computer ayntemn,

Concurereni with the hardwnre revolution, however, aoftware technology
hns made equally deamatie, 1 1enn well publielzed, advancos, I ia
well document.ed that, nchlievementa In the tieldn of Tanpganpe dentpn,
development. ateatepties and methodolopten, and other computer actenee
dinetplinen ean nlpnifteantly tnareane Lthe operational ef'fectivenenn
ot compul.er nyant. mn., I, remntns one off Lhe great. paradoxens off Lhe
technolopienl nge Lthat, althouprh hardwnre advanecen have been acceptod
wilth pgreat, enthaslanm, Incorpoaration off modern soltware Lechnotogy 1o
moat of'Len Inargely tgnored or netively reninted,

Thin paper pronentas our oxperliencen tn developing the nof'twnare for n
renl-time datn ncquianttion ayatem baned upon a modern noltware
Lechnolopy. It denertbes our ateatepgy ffor tmplementing n compuler
nelence appronch to develop n very nowerful, yel practten), sof'tware
syatem. Benefitn that are directly atteributable to thin approach are
fdentitied and rature enhaneements cre nuggented,

WNR/PSR Environment

In order to establish the requirements and operational constraints
that led to the development of the Los Alamos Data Acquisition Command
Language (DACL), a brief description of the environment in which the
system must perform 18 appropriate. The Los Alamos Weapons Neutron
Research (WNR) facility 1s a world class neutron scattering installa-
tion dedicated to research in physics, chemistry, materials sclience
and blology. Operatirg in conjJunction with the 800 MeV linear ac-
celerator at the Los Alamos Meson Physics Faclility (LAMPF), the
facility supports an expanding, internatlional user community. A major
facllity upgrade will result from the commissioning of the '.0o3 Alamos
Proton Storage Ring (PSR) 1in Septembher 1985, and will transform
WNR/PSR 1into one of the world's premler neutron scattering centers.

This upgrade, however, will render the exiating real-time data ac-
quisition system obsoletr:. 1ts replacement, which 1a currently under
development, will ultimately conaist of a network of 8-12 computers of
the VAX 11/7%0 e¢lasga, each hosting the VMS operating system. Encn
computer will be dedlieated Lo controlling the data acquisition for a
single tnstrument or experiment. The DACL sayatem will proviile a
nuclcus of' common data acquisttion sof'tware for each compute: .,

In additlon to supporting numerous Instruments and expertments, the
data acquistition environment reguirea that, the very difrferent, needs of
two clasnes of users (Condensed Matter Physles and Nuclear Physies) be
serviced by Lthe system. Even within a alngle user clans, cxperimental
cenf'igurations ecan vary radlceally. Locenl resources are limited tn
approximalety four tfull-time progerammers, so {t 1a not rfeanible to
bulld and malntain aseparate, cuntomized systems or subsystems lor
Individual Insatruments or experimentsa. The environment,, thereforn,
enconrapes the Jdevelopment. off »n alnple penerte (rather than vartous
apecinl purpone) datan acquiatition system,

Heguirementa and Gonln

The requirementn ldentified forr bhe DACHL aystem deprlve from the satrin-
pent corstratinta tmponed by the aystem envirvonment.. Thene
requlrementa nre two: Lthe nystem munt be broadly funcettonnl to meet,
the veeda off al! uners, and the system must, be deslgned Lo promobe
ef'ttetent, fmplementation, operation and mnintenance,

The turctionallty and uner Intertace requirements Lthat. were tdent i {ed
for Lhe DACHL ayntem wore spee' ied uning ntandard Lechnlgnen and
methodolopten [], Thene requlrements, and the reasulbing tmplementa -
tlonan, ave documented elacwhere [2]0 0 To review aspecelfle reqalrementn
or the methods ecmployed In thetlr determination 1 beyond Lhe purview
of thin work.,

The requdrementse for et flteleaey, atated above, dertve From Lhe broad
applieationn Lo he aatliofied, nn well an Lthe very lTimtled renonreen
that can oo hroupht Lo benr on the project., Although eftleleney In
mont. penerally conntdered wlithin a haedware conbext. (execut.lon apeed,
renonrce utiltzatton, etel), from the pernnective ot Lhe DACH project

1t must encompass all project resources (especially the scarce and
precious personnel resource) over the entire software 11ife cycle. The
criteria used to gauge the project effilclency Include system adapt-
ability (and maintainability), responsiveness and robustness.

An adaptable system can be made to conform to the needs of the entire
range of WNR experiments and instruments wlthout requiring interven-
tion by system personnel. Consequently, to meet thls requirement in
our environment, the system must permit dynamic configuration by the
user. One of the best ways to improve system maintalnability 1is to
eliminate the need for system personnel to implement frequent minor
enhancements that are of no general interest. An adaptable system

that 13 easlly extended by 1ts users prcmotes this goal.

In order to be responsive, the DACI, system must be designed to mini-
mize time Intervals durlng whlch the user 18 excluded from initiating
new processes from an interactive terminal. 'This goal 1a based upon
the premilse that the only time intervals of importance 1in thls context
are those suhbjectively experlenced by a human operator. 1t should
also be noted that execution speed alone 18 not the only criterion of
Importance In this regard. Indeed a system may be characterized by
extremely fast execution, yet still exhiblt unacceptably slow
response.

For a aystem to he robust, 1t must be capable of 1dentifying erroneous
Inputa or unusnal conditions, recover {f possible, or I'f recovery is
impoasible, deprade gracefully. Above all, a robust system protects
the Integrity of the experiment and assoclated data from an inex-
perlienced or confused uner,

Implementetion Strategy

The moat vreliable method for Incorporating the eff'lefency requirements
deacribed In the preceding sectlon into a software syastem 1 to base
the system destpn on na modern sof'tware technology. Conalatent, effec-
tive toola and methodologles to support thia approach are well
documented [3-51, Usinyg these resources, the sof'tware technology can
be introduced at elther (or both) of two levela,

The aimplest approach ifnvolves the adoption of a modern programming,
Ianguapge. Thia atrealtepgy cnhances programmer of'f'ielency by providling
powerful control atructures, inereaned leveln of data abatenction
(through more lexible datn atructures), improved readabfility and
fentures that atmplify tmplementation (support, for satrong typing and
modularity, for example). These fersturen reduce the effort requlred
for a proprammer to fmplement and nupport an npplleation at the code
(or detatled des n) level,. Conneguently, the most atgatticnnt
beneftts are palned Crom thia atratepy during perlioda off Iintenntve
coding or detntled deafgn netivity nnd, to a 1imited extent, In per-
forming matntenanee nt. the code tevel, Certatnly, such n atrategy han
1fLtte eftfect, upon the apecitliention and functlional dealpgn phases, or
upon the operation phane,

A more universal strategy employs computer sclence concepts to con-
struct a system that 1s efflclent across the entire 1i1fe cycle. This
approach Introduces the modern software technology at the design level
and constructs the system around 1t. Because the technology 18 in-
tegrated into the system at the top level, 1ts scope 18 broadened to
extend over many phases of the 1life cycle. The result 1s a system
that can be efficlently designed, implemented, operated and
naintained.

The DACL development project utilizes both of the ahove strategles to
promote overall efficiency. To promote implementacion phase ef-
ficlency, an extended version of the Pascal programming language 1is
used for all coding. At the top level, the efficlency requirements
described in the preceding sections are identified and are accorded
che same importance durling the design phase as functlonallty
requirements., Specifle computer sclence and information theory con-
cepts, identifled at the outset, are actively Incorporated Iinto the
system deslign., These Include the concepts of dynamic data structures,
concurrent processing and state machlines.

Dynamie Data Structures

To glean the preatest benef1t from the introduction of dynamic data
structures, these constructs should be employed at all levels of the
DACTE system. The cholcee ot Pascal as the programming languapge makes
dynamte structures fmmediately avallable at the program level., ‘T'wo
additlional applicatlions alaso present themselves, namely global control
structures and data '1les. The DACL Tmplementations of each of these
entities 18 bascd upon dynamie data structures.

Fundamentnally characteristic of any data acqulsitlon system are {ts
control structures, These structures are used (among other things) Lo
det’ ' ne memory partitions for data histograms, to detine the charac-
teriatica of hardware devices that are known to the snystem, Lo seft
diserimination boundartea and to store information tiat deseribes the
experimental conflguration or conditliona. These enttitleon tradition-
ally restde in gmlobal, staticeally alloecated data structures of
predeciared length (usually arrvays).

Within the WNR enviroument, asueh atatically def'ined control atructuren
preaent, many problema. The desten and fmplementation problems are
obvioun: not only must the deatpgner fforesoe overy conterol astructure
and aubatructare that fs regquired by Lhe syastem (Lhe numbher of
arraya), bnt the stze (array dimenstonnallity) of ench control atructure
munt alao be adequately predicted. Thia nsually results in overal-
loeating ench control structure Lo allow for "fulure expananton™, In
an environment suech an onra, In which regnirements vary deantieally
acroas Lhe pranpge of Instruments and experiments supported, thin policey
has aevere, adverse connequencea, In order ffor all control structuren
to meet, the needn of overy experiment, each tndividanl astructure munt
be extenntvely overalloonted Lo anccomodnte Lthe demandn of o worat, cance
confipguration, Thia resulls tn the tmponition of n large overhend
(composed of the unton of overheads nanocinted with ench tndlvidunal
conf'tguration) vpon every itndividunl experiment.,

In conventional systems, utlillzing static allocation schemes, severe
functionality problems also exist. Regardless of the space avallable
in other (possibly unused) control structures, the user 1is strictly
constrained in the number of entitlies of a particular class that can
be defined. Extending this number for a particular control structure
requires system modification and rebulld. Similar drastic action is
required whenever a new control structure must be implemented. This
results in a system that 1s functionally rigid. New applications must
be postponed until required software modifications are performed,
thereby stifling the spontaneity of 1ts users. Compoundlng this
problem, these structures are usually 1implemented as arrays in an
ohsolete language, resulting in a closed archltectuie that makes
access by other applicatlons difficult and prone te error.

The DACI system eliminates the above problems by implementing a lo-
cally developed facility that permits dynamic (run-time) allocation of
all control structures. Owing to 1ts functional equivalence (and
analogous syntax) to Paccal dynamie varliables and pointers, this
facility has been dubbed the DACIL heap. Indeed, from the users'
perapective, the only functional difference between the DACI: heap and
the Pascal facllity 18 that the DACI, heap 18 system-global (can be
accessed by any application) and nonvolatile (retains 1ts integrity
across image executions).

The fundamental component of the DACL heap 18 the heep record. (Here,
the term record 18 used in the Pascal sensc of a structured type that
ts partitioned into flelds of (possibly) different types.) A heap
record is deflned tc be 128 bytes in length, of whiech five bytes are
required for system overhead. ‘The DACL heap currently supports 256
differently organized beap records, of which approximately fifty are
predefined by the system for the vartous standard controi stractures
(CAMhe and FASTBUS hardware modules, memory control blocks, graphica
atructures, and status tnformatlton). The remainder are avallable to
be custom!7zed by the user community.

The DACIL heap ta tmplemented within a VMS global section that can
contaln 10000 heap recordsa. Fach heap record represents a single
ent,ity (nn tndividual scaler, for example). Control structures are
conatructed as linked liats of asatmilarly organtized heap records within
the DACIL heap. Therefore, no limit extata (within the 10000 record
DACH heap size) for tvhe size of a particular control structure.
Consequently, only those control satructurca that arve regulred for a
particular expertment are present in the DACL heap (and then only in
the mintmum size aecessary). >ontrol structure allocation becomes
eff'iclient and compact,

Fach heap record ta composed of a standard partittion (the asystem
overhead) and a control-structure-dependent partitton (Ftg., 1). The
atandard partition conniatn of two pointers, named NEXT and MORE,
reapectively, and n control atructure apecifier called the TAG. 'Theae
three flelda occupy the firat ive hytea of cvery heap record, The
remaining 123 bytes are paritttioned Into tfi1elda according to the
control atructure with which the heop record 1s associated (an
npectflied by the TAG value)., The TAQ may assume any of 256 dlatinct
enumerated valuen,

The NEXT pointer 18 provided as a standard polnter to reference the
next entity in a control structure. Although control structures may
be multiply linked, they are never linked bidirectionally.

The DACL heap implementation also recognizes that the 123 bytes of the
control-structure-dependent partition may not always be sufficlent to
completely describe an entity. 1In such an instance, an extension
record may be defined and uniquely partitioned for the remalning
information. The extenslon record is then referenced by the standard
MORE pointer. An extension record i1s a distinct heap record with a
standard partition (inecluding a MORE pointer) of 1its own; 1t can also
be extended. As a result, a single entity can be represented as an
extensible linked list. The DACL heap also supports a dynamlc string
faclllty which allows strings of any length to be represented and
eliminates the necessity of predeclaring a maximum length for any
string. Flgure 2 1s a graphic example of a typical control structure.

The DACIL heap facility provides a complete set of utility functions
for the programmer/user interface. These include standard utilities
to allocate and deallocate heap records as well as utilitles to main-
tain (insert into and delete from) the control structures. Utillities
for clearing the DACL heap, for listing its configuration, and for
supporting the dynamic string facllity are also provided. By making
extensive use of recursion, these utilities can process control struc-
tures that are link:d Iin very complex ways.

The utiittles perform extensive error checking and valldatton to
ensure that the Integrity of the DACL heap 18 not compromised., The
heap ITmplementation s et'tectively hidden, and the programmer s
foreced to employ the standard Interfaces. 'These interfaces protect
the contents of the heap from the most error prone operations and
thereby stpntfleantly reduce the poasibility of data corruption due to
improper accessn. The DACL heap 18 deslzned to provide a slmple,
consistent, intertace for non-bDACH appliecations as well. The archltece-
ture of the DACL heap 18 kept deliberately open to allow acceess by any
applicatlon. Additionally, the tmplementation of Lhe heap record as a
Panca! record stgntificantly stmpl! ' les referencing nformation
thereln. Data must be referenced by record and f1eld name, the pos-
athillty of data corruption due to Incorrect offsets Into a datn
structure tu eliminated.

Aa hna been shown, the DACH heap provides a practical alternative to
traditional statleally allocated control structures. The DACHL henp
tmplementation s functionally more powerful and more effletent I1n ita
use of resources than statle structures,. 1t offers the additlional
ndvantage of alpgaitleantly enhanelny nyntem adaptabl 1Ly nnd
robustnenn. By cencouraging usera Lo define and tmplement, appllentton-
dependent. control atrancetures, 1L alao eltminatea the necenntty tor
f'requent gof tware modifieationn by nystem personnel.,

In addttion to control atructurea, other ayantem dntn atrocturesr oan
benef Lt frrom Lthe Introducttion of dynamie characteristicn., Principna)
among, Ltheae fr the structure used for oftline data atorage, penorally
a scequentinl '1le. Among the many tneonvenlences and disadvantagen
associnted with a nondynamlie tmplementatton are the followling.

Traditionally, the format of a sequentisally organized data fille 1s
rigidly defined. In a multiple application environment, this feature
has two immedlate consequences. Filrst, the format must be derined to
include all possible information required by any application. This
forces a file written by a particular application to contain large
amounts of irrelevant 1Information. The second consequence resuits
from the fact that charnging the file format (to accomodate a new
application, for example) makes all previously written files obsolete
(and unreadable). System personnel are then frequently required to
modify the utilities that read and write data files, as well as to
produce utilities to convert from obsolete to the (current) standard
format.

The sequential organization of these flles can also cause
inconvenliences. Access to Individual entitles (a single data set in n
group of 100, for instance) 18 slow and cumbersomn. Updating the flle
(e.g. to 1nclude processing status or previously unavallable
information) 1s difficult.

The DACIE solution abandons sequentlial f1les for the Indexed sequential
access mcde ([SAM) organization, [SAM files permlf. elther ilndexed or
sequential access as required by an appllication. Any recoird in the
f'1le can be rapidly accessed using the indexed access mode. The
indexed access may then be followed by a serles of sequential accesses
to read a large amount of Information.

The DACL tmplementation partitlions a data flle into two sectionsa: an
abstract block and a data block. The abstract block contalns intorma-
t1on that deseriove3 the experimental configuratlion and conditions.

Any informatton resident in the DAC!, heap can be transferred into the
abstract block.

At run time the user can speelfy which heap structures are to be
placed into the abstract block. This can be accomplished by accepting
a defanlt abstract biock componition defined by the system or by
providing a list of those control structures to be Included. Standard
utilities then butld a unlque key for each entity of each control
structure spectified, and write each entity to the abstract block.

Keya are devised to allow the correaponding control structures to he
restored from the data rile to the DACH heap in the correct sequence.

The data block containa the datn acqulired durlng the run, organized by
histopram name,. Data histograma are decomposed Into the data file In
a manner simtiar to absteract records. Data block logleal recorda are
extremely lavge (32000 bytes). This enables the stornge or retrieval
of moat histograms with a very asmall number of high level f'1le
acecesgygen,

The major advantage of this approach 1les In 1ts extreme flexiblility.,
Beenause the '1le format ta dynamteally detined at run time, data f'iles
contatn only that tnformation which 18 pertinent to the application.
Data 'ilen are therefore very compact. The ff1les are read and written
without tncorporating complex protocols. ALl f1ilesn can be read and
written by the aame set of utllities, regardliesa ot the Informatlon
thrt they contatn, therefore, ro f'1le ever becomen obsolete. Finally,

access to Information in an ISAM flle 1is very efficlent. Any record
can be located by a sequence of accesses that is comprised of a single
direct (keyed) access followed by a series of sequentlal accesses.

The necessity of reading every preceding record en route to the
desired data or abstract informatlion 1s eliminated. Performance 1s
comparable to that of a sparsely populated hash table [6], but does
not suffer the large resource overhead required to make hash tables

efficient.

From a system perspective, the malntenance overhead assoclated with
sequential flle implementations 1s eliminated. The simplicity and
conslstency of the user interface promotes a more reliahle and robust
system. Overall functlonallty and performance are Ilncrecased.

The TSAM file organlzation 18 also appropriate for Implementing a
catalog of data files. The DACL system maintains coples of all data
files in a central archive from which users may extract destired files.
By organlzing each catalog entry as an ISAM rccord with multiple keys
(file name, experimenter, date/time, instrument and title) a very
powerful directory utlility can be supported wlth minimal effort.

Users can examine catalog entries for classes of runs, all runs atfter
a speclifiled date or by any key value. Implementing, a system with
equivalent functionality (but based upon sequentlal flles) 1s ex-
tremely cumbersome by comparison.

Concurrency

The prime motivation for Ilntroduclng concurrent processing Into the
DACIL, system 18 to improve the system's responsiveness. This policy 1s
implemented In two ways: 1) by tdentifying classes of procesaes that
can execute exclusively In a background mode, and 2) by tdentifyling
taskas (or components of tasks) whose completion 1s not required prior
to the initializatlion of asubsequent processes. The princelipal example
off the irst case 13 the DACH data acquislitlion task. ‘The DACL data
cataloging task 1s typlcal of the second.

The DACL data acquisition control task ts comprised of a family of
cooperating proceases that execnte concurrently. These include the
primary data acquistition process (a detached process that executes a
DCL command f1le which contalna DCL and DACL commands) and various
other processes that service 1t.

The DACH syatem s Intepgrated tnto the VMS DCL command language:,
Conaseyuently, data acquiasitlion commands can be lasued Individually
from the termlnal or execcuted from wlthin a DCiy command '11e, 'The
DACH dnta acqulistition task providen a very powerful bateh ecapablllity
that permlta datn acquiasltion Jjobs to be executed In the bhackground,
Although thia tmplementatlion ta sifgnificantly more powerful than an
ordinary batch tactltity, tia purpose remalnsg the same: Lo free the
usoer's terminal for interactive proceansting and to nllow advance
acheduling of background data acqulsltion operationan. Ry iaolating
data ancquintition from tnadvertent or {1l-advised "llve forminal"
enfriea, overall gystem reliablility ta enhanced.

The DACL data acquisition control task supports a queue of pending
runs that can be updated, modiflied and examined by the user.
Modifications are made through a subprocess that permlts the user to
employ a standard text editor to perform the updates. The same 3ub-
process also permits the user to obtain information describlng the
queue status, queue contents and the currently executing run. All
queue operations are confined to a single VMS process (and 1its
subprocesses). This policy allows extensive validation to be per-
formed upon the the queue (and upon the command files referenced
therein) as an integral part of the modification activity. This
localization of function also simpliiflies the synchronization of the
modification process with the process that submits runs from the
queue, effectively allowing the submlission process to be automatically
inhibited while modifications are 1in progress.

The second component of the DACL data acquisition task 1s the run
submitter process referenced above. Thls process 1s responsible for
submitting the command file at the head of the pending runs queue for
executlon. It 18 present 1in the background (although generally 1in a
suspended state) at all times. Tt 1s awakenad whenever the conditlons
are right for submission of a data acqulsition Job, namely that no
data acquislition Job 1s currently executing and that the pending runs
queue 1s not empty (and is not being modified). Once started, this
process inhiblts the modification process, submits the next command
ffile from the queue and modifies the queue tc reflect the new status.
Upon exit, the modificatlon process 1s enabled.

The run submitter also provides an Interface between the user and the
currently executling run. The user may instruct the 1run submitter
process to kill, pause or resume the currentiy executlng data acqulsi-
tion command f1ile.

The DACIl, data acquisltion task Incorporates a message monltor process
to allow the other component processes to communlcate with the
terminal. This process 1s automatically created when the run submit-
ter 1s 1nitialized. It remains suspended until an exceptional
condition occurs. The message monitor process then awakens to report
the problem to the terminal. All processes thereby communicate wilth
the terminat through a common medlator.

All three processes which comprise the DACIH data acquisitlion task
malntalin status Information (in the form of event flaga). This Infor-
matton 1s employed by the varlous components for synchronizatlon and
verification. The faclltty 1a therefore implemented as a seclf-
regulating system with high rellabiilty.

The gecond major applleation of concurrency within the DACH system Ls
the data f1le cataloging factitty. This task 13 usually atarted by
the datn acquisttion Job fmmedlately after a data f1le 13 bully
(although 1t can also be started tnteractively by the user). The
purpose of the task 1a to move the data flle to the archive reglon and
to update the data t'ille catalog.

The catalog operation s performed upon an existing f1le and therefore
requlres no tnformation from the heap. Consequently, it ta clearl
“ ¥

Independent of other data acqulisition activities and should not be
permitted to delay these operations. The large amount of preprocess-
ing performed by the cataloging task prior to transfer of the data
file virtually guarantees that the delays incurred are significant,
thereby encouraging implementation as a concurrently executing
process.

Under this implementation the catalog facllity creates a detached
process to perform preprocessing, flle transfer and catalog update.
This allows the data acquisition Job to contlnue while the catalogling
operation 1s 1n progress. The detached process notifies the user upon
completion. If an error condition occurs to prevent the catalog
operation from completing successfully (e.g. no network link between
the data acquisition and data archive computer systems), the user 1is
notifled and the fille 18 gueued for cataloging at the next Ilnvocatlion
of the catalog facility. Thils provides sufficient protection and
communication to assure reliable operation of this ecritical faclillty,
arid results 1n a significant improvement in system response.

State Machine Features

One of the major operationsal deficiencles of many broadly functional
systems 1s the abllity to execute syntactically valid commands 1n &«
semantically 1nvalld sequence or context. As systems become more
functional (and complex), the opportunity for committing suczh errors
Increases dramatically. The outcome can range from user inconvenlence
or confustion to catastrophlec data loss. Because of the great expense
Incurred in producling the WNR neutron beam, and the hlgh user demand
for access to the facllity, errors that compromise data Integrity can
have serious economic, political and sclentif.lc consequences,

That the varlous DACI, features dlscussed 1in the preceding sections
enhance the hardiness and rellabllity of particular system componenta
18 clear. However, a conslstent, archlitectural approach is required
to make the system, as a whole, more robust. 'The strategy adopted for
DACL is to Implement the entire software system as a state machlne.
The implementation defines four valld states for the DACL system:
INITLALTZE state, RUN state, PAUSE state and HAI'' state. The current
DACI: stabe 1s malntalned In a control structure In Lhe DAGLH heap. At
any time duarinpg, execution, the DACIH system 18 requlired to be 1n one
(and only one) of these states, Thls approach recognizes that there
are no dangerous commands, merely dangerous contexts, and that these
contexts can be ldentifled and addressed prior to command executlon.

A set of valld atates ts defined or every DACL command. 'The flrst
task of every command 1s to check the (current) state trom which 1t
has been Invoked agalnat tts valld set. [the current state does not
match one of the valld states, an error message 1s 1asued and the
command 1s dlsallowed. In thls manner, command exccution s
reatricted to occeur from within a senalbie context, and the vast
majorlty of semantic errora can bhe ldentified and disqualitied prilor
to caustvy any damage. All command valldation Is done by a alngle
uttltty function, allowling the faclllty to be aimply Integrated 1into
all commands.

The possibility of inadvertently placing the system into an undesired
state (as a result of a side effect of a valld command executed in an
appropriate context) must also be considered. To prevent thls situa-
tion from occurrling, a set of state transition commands 1s explicitly
specified. These commands represent the only means available to a
user for changing the DACL state. There is one {and only one) state
transition command for each valld state transition. These commands
have no functionallty beyond changing the DACL state. £11 other DACL
commands are expressly forbidden to change the DACL state. The DACL
state can therefore never be changed implicitly and the problem of
side effects 1s elliminated.

Future Enhancements

Powerful as 1t 1is, the DACL implementation can also be improved. In
particular, dramatic improvements in functionality and rellability
could be realized simply by implementing the system in the Ada [7]
programming language, an optlon that 1s within reach of many proJjects.

By employing Ada private types, the implementatior of dynamic data
structures such as the DACL heap can be securely hidden from
programmers/users, thereby forcing utlilization of standard interfaces
for access. The architecture thereby remains open, but the system
would becomes far more robust.

Generic functions (another Ada feature) can be applled to the develop-
ment of many system capabllitles. These constructs simplify the
system by eliminatling unnecessary duplication and standardizing
Interfaces.

The introduction of concurrency into any application 1s more simply
accompllished 1f the underlylng programming language supports concur-
rent processling. Ada Incorporates concurrency as a standard language
feature, "The need to employ operating system features to create,
control, and synchronl!ze concurrent processes 13 thereby eliminated.
Consequently, system 1implementation 1s simplified and portability is
enhanced.

Concluslons

Although the beneflts of Incorporating a modern software technology
Into a reltatively large software system (lLlke a real-time data ac-
quistition system) are signiticant, accompanying overheads also exliat.
Most of these overheads are assoclated with the manner !'n whlich such a
system must be developed; they requlre large measures of comm!tment,
and discipltine on the part of the development organizatlion. Any
projJect that opts to Introduce a modern technology into tts software
mist be prepared to ledicate a majJority of tts effort to requlrements
analysla and system design. In partlicular, the temptation to trans-
late portlona of the design to code during the early stages must be
restiated. Otherwlae, the technology will be incorporated itn a
plecemenl and haphazard fashion, the system will be fragmented and
overall benefits will be minimal or nonexistent.

In the preceding sectlcons we have described our attempts to improve
the quality of our software system by exploiting the features of a
modern software technclogy. We have described the implementation of
various features 1including dynamlc data structures, concurrency and
state machiue Teatures. The advantages assoclated with this approach
have been dlscussed in detall. It 18 our experience that this
strategy has contributed significantly to the ability of a small
projJect wlth limited resources to develop, implement and malintain a
powerfully functional real-time data acqulsition system. We contend
that proJjects of any slze can beneflt fiom thls ap»nroach.

Acknowlegements

Thls work was performed under the auspice.s of the U. S. Department of
Energy.

References

(1] P. Bruce and S. M. Pederson, The Software Development Projcct:

Planning and Management. New York:John Wiiey and Sons, 1982.

[2] R, V. Poore, D. M. Barrus, G. Cort, J. A. Goldstone, .. B. Miller
and R. 0. Nelson, "A Data Acquisition Command Interface Usling
VAX/VMS DCL," presented at the Fcurth Real-Tine Conference on
Computer Applicatlions 1iun Nuclear and Particle Physlcs, Chicago,
Illinols, May 20-24, 1985,

[3] R. S. Pressman, Software Engineertiiy: A Practitloner's Approach.
1962,

New York:McGraw-Hill Book Company, 198
(4] E. Yourdan and L. L. Constartine, Structured Design: Fundamentals
of a Diqclpltnc ot Computer Progrqm and Systems Deslgn. Fnglewood

Cliffs, N.J.: Prentice-Hall, Inc., 1979,

(5] E. H. Bersorf, V. D. Henderson, and 3. (. Stegal, Software
Conf'iguratlon MlnagnmonL An Investment 1n Product Integrity.
Fnglewood Ciiffs, N.J.: Prentice-Hull, Inc., 1980,

[6] N. Wirth, Algorithms + Data Structures = Programs. Englewood
Clifrfa, N.J.: Prentice-Hall, Inc., 1976.

L7]) Ada 18 a reglstered trademark of the U.S. Department of Defense,
Ada Joint Programs Off'lce.

/lf

DYNAMIC STRINGS, HEAP POINTERS, ETC.

—AXM=Z
Mo
O>—

/l/
WMW
SYSTEM CONTROL-STRUCTURL
OVERHEAD DEPENDENT
(5 BYTES) (123 BYTES)
@

_heap_pir =0 .. 63535 ;
—dynamic_string_rec = RECORD

string : VARYING [16 | OF char ;

exiand : _heagp_ptr ;

END ;
_heco_record_tag_enum = (..., _scdler, _more_scdler, ...) ;

_heap_record = RECORD
more : _heap_ptr ;
next : _heop_pir ;
CASE tag : _heap_record_tag_enum OF

_scaler : (scdler_name : _dynamic_string_rec ;
scaler_crate : integer ;
scaler_slot :inleger ;

scaler_count : nteger) ;

_more_scder : (scdler_type : _dynamic_siring_rec ;
sccler_title : _dynamic_siring_rec) ; (b)

F_ND.

Flpure |,

N |

FIGURE 2.

Figure 1.

Figure 2.

FIGURE CAPTIONS

The structure of a DACL heap record. (a) Schematic represen-
tation. (b) The corresponding Pascal defanition for the heap
records that comprize the sca.er control structure.

. section of a typical DACL control} structure constructed from
heap records. A portion of the scaler control structure (refer
to Fig. 1b.) 1is shown schematically. Successive scalers are
represented by structures linked with NEXT (N) pointers. Ex-
tensfon recordsare referenced through MORE (M) pointers. Dyna-
string extension records are referenced by STRING EXTEND (E)
pointers.

